Discretization error estimates in maximum norm for convergent splittings of matrices with a monotone preconditioning part

نویسندگان

  • Owe Axelsson
  • János Karátson
چکیده

For finite difference matrices that are monotone, a discretization error estimate in maximum norm follows from the truncation errors of the discretization. It enables also discretization error estimates for derivatives of the solution. These results are extended to convergent operator splittings of the difference matrix where the major, preconditioning part is monotone but the whole operator is not necessarily monotone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stair Matrices and Their Generalizations with Applications to Iterative Methods Ii: Iteration Arithmetic and Preconditionings

Iteration arithmetic is formally introduced based on iteration multiplication and αaddition which is a special multisplitting. This part focuses on construction of convergent splittings and approximate inverses for Hermitian positive definite matrices by applying stair matrices, their generalizations and iteration arithmetic. Analysis of the splittings and the approximate inverses is also prese...

متن کامل

Monotonicity and Iterative Approximations Involving Rectangular Matrices

A new characterization of row-monotone matrices is given and is related to the Moore-Penrose generalized inverse. The M-matrix concept is extended to rectangular matrices with full column rank. A structure theorem is provided for all matrices A with full column rank for which the generalized inverse A+ & 0. These results are then used to investigate convergent splittings of rectangular matrices...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

On a Posteriori Error Estimates for One-dimensional Convection-diffusion Problems

This paper is concerned with the upwind finite-difference discretization of a quasilinear singularly perturbed boundary value problem without turning points. Kopteva’s a posteriori error estimate [N. Kopteva, Maximum norm a posteriori error estimates for a onedimensional convection-diffusion problem, SIAM J. Numer. Anal., 39, 423–441 (2001)] is generalized and improved. 2000 MSC: 65L10, 65L70.

متن کامل

Boundary element monotone iteration scheme for semilinear elliptic partial differential equations, Part II: Quasimonotone iteration for coupled systems

Numerical solutions of 2× 2 semilinear systems of elliptic boundary value problems, whose nonlinearities are of quasimonotone nondecreasing, quasimonotone nonincreasing, or mixed quasimonotone types, are computed. At each step of the (quasi) monotone iteration, the solution is represented by a simple-layer potential plus a domain integral; the simple-layer density is then discretized by boundar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 310  شماره 

صفحات  -

تاریخ انتشار 2017